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Abstract
Introduction: Using brain network and graph theory methods to analyze the 
Alzheimer's disease (AD) and mild cognitive impairment (MCI) abnormal brain func-
tion is more and more popular. Plenty of potential methods have been proposed, 
but the representative signal of each brain region in these methods remains poor 
performance.
Methods: We propose a highly-available nodes approach for constructing brain net-
work of patients with MCI and AD. With resting-state functional magnetic resonance 
imaging (rs-fMRI) data of 84 AD subjects, 81 MCI subjects, and 82 normal control 
(NC) subjects from the Alzheimer's Disease Neuroimaging Initiative Database, we 
construct connected weighted brain networks based on the different sparsity and 
minimum spanning tree. Support Vector Machine of Radial Basis Function kernel was 
selected as classifier.
Results: Accuracies of 74.09% and 77.58% in classification of MCI and AD from NC, 
respectively. We also performed a hub node analysis and found 18 significant brain 
regions were identified as hub nodes.
Conclusions: The findings of this study provide insights for helping understanding 
the progress of the AD. The proposed method highlights the effectively representa-
tive time series of brain regions of rs-fMRI data for construction and topology analy-
sis brain network.
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1  | INTRODUC TION

Patients with Alzheimer's disease (AD) or mild cognitive impairment 
(MCI) show a decline in memory and cognitive functions than healthy 
people (Watt & Karl, 2017). Studies have shown that the brains of 
AD or MCI patients changed before the clinical symptoms appear 
early (Celone Willment et al., 2006; Greicius et al., 2004). Recently, 
many studies revealed the differences of functional connectivity of 
AD brain regions based on resting-state functional magnetic res-
onance imaging (rs-fMRI) (Ali et al., 2017; Sharaev et al., 2016; Yu 
et al., 2020). Specially, it is more and more popular that using brain 
network and graph theory methods to analyze the AD and MCI ab-
normal brain function (Lei et al., 2020; Wang, Shen, et al., 2018).

So far, several groups have developed methods to investigate 
changes in functional brain organization in patients with AD and 
MCI. Liu had used a method, which is based on the partial correla-
tions and indirect dependencies between each pair of brain regions 
to calculate the abnormal patterns of AD brain (Liu, Zhang, Yan, 
et al., 2012). Zhang had constructed cortical diffusivity networks 
using graph theoretical approach. He defined connection as sta-
tistical associations in gray matter elevated mean diffusivity (MD) 
value between every two brain areas, and then, they constructed 
a symmetric connection matrix to analyze the AD and MCI abnor-
mal brain function (Zhang et al., 2015). Cui and Liu had developed 
a Multivariate Predictors model, which extracted multiple features 
from different modalities of data. This model can explore an optimal 
set of predictors in AD abnormal brain (Cui et al., 2011). Ali Khazaee 
had used directed graph measures to identify alteration of brain net-
work in MCI and AD. They drew a conclusion that patients with MCI 
and AD may experience disappearing some hub regions during dis-
ease progression (Ali et al., 2017). Si had provided a brain network 
model for studying the mechanism underlying the development of 
AD and MCI. In this model, they had adopted not only anatomical 
distance but also network topology, such as topology-based link pre-
diction methods and naïve Bayes classifiers (Si et al., 2019). These 
methods effectively used information of brain network topology, 
and they had obtained rational results at that time. Simultaneously, 
for a large proportion of these methods, the first step was to seg-
ment the rs-fMRI data into different regions by using some kind of 
partition template, and then signals of each region were averaged to 
generate a representative signal for each region. They calculated the 
correlation of different regions based on these representative vox-
els. However, the averaged signal is not sufficient to reveal complex 
topological information of the brain region. The connection network 
that construct based on averaged signals lacks a deeper interaction 
between the brain regions and the topological differences between 
patient group and normal control (NC) group.

In order to address the above problem, we propose a high-
ly-available nodes approach for constructing brain network of pa-
tients with MCI and AD. The connected weighted brain networks at 
the different sparsity and minimum spanning tree (MST) were con-
structed base on this method. To date, many studies employed the 
classification of function brain networks to investigate alterations 

in MCI and AD brain regions (Ali et al., 2017; Yue et al., 2011; Wee 
et al., 2012). The performance for classification of patients with AD 
and MCI from NC subjects was selected to evaluate the preponder-
ance of our algorithm and conventional algorithm. In addition, stud-
ies have shown that identifying the brain regions associated with 
neurodegeneration was correlated the complex interactive informa-
tion in the network (Celone Willment et al., 2006; Liu, Zhang, Bai, 
et al., 2012). We hypothesized that identifying the hub nodes of AD, 
MCI, and NC brain regions would achieve better results, because 
the node information is more effective, in which the brain networks 
were constructed base on our method.

2  | MATERIAL S AND METHODS

Data used in the preparation of this article were obtained from 
the Alzheimer's Disease Neuroimaging Initiative (ADNI) Database 
(http://adni.loni.usc.edu/). A large proportion of the information in 
the ADNI are magnetic resonance imaging (MRI), other biological 
markers, and clinical and neuropsychological assessment about MCI 
and AD. For up-to-date information, see www.adni-info.org. ADNI 
researchers collect several types of data from study volunteers 
throughout their participation in the study, using a standard set of 
protocols and procedures to eliminate inconsistencies. At the time of 
enrollment for data collection, subjects gave written informed con-
sent and completed questionnaires approved by each participating 
site's Institutional Review Board.

The data processing procedures were approved by the First 
Affiliated Hospital of Zhengzhou University Scientific research and 
clinical trial ethics committee (No: 2018-KY-88).

2.1 | Subjects

We selected 247 subjects from the ADNI Database, 124 males and 
123 females, aged from 47 to 82 years:. 84 patients with AD, 81 pa-
tients with MCI, and 82 NC subjects. The dementia severity of sub-
jects was evaluated by the Mini-Mental State Examination (Folstein 
et al., 1975) and the Clinical Dementia Rating (Morris et al., 1997). 
For the details, see Table 1.

2.2 | Data acquisition and preprocessing

Functional and structural MRI scans were acquired from three 
tesla (3T) scanner. Functional MRI images were acquired with rep-
etition time (TR) = 3,000 ms, echo time (TE) = 30 ms, slice thick-
ness  =  3.0  mm and flip angle (FA) =  80°. Structural MRI images 
were obtained using a 3-dimensional high-resolution sagittal T1W. 
Parameters: TR = 600 ms, TE = 11 ms and slice thickness = 0.9 mm.

All preprocessing steps were performed with Statistical 
Parametric Mapping (SPM8) software (https://www.fil.ion.ucl.
ac.uk/spm/) (Litvak et al., 2011) and Data Processing Assistant for 

http://adni.loni.usc.edu/
http://www.adni-info.org
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
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Resting-State fMRI (DPARSF) toolbox (http://www.restf​mri.net) 
(Yan & Zang, 2010). The first 10 volumes of the functional images’ 
session were discarded to allow for equilibrations of the magnetic 
field and slice-timing correction to the last slice. All the remaining 
volumes were realigned for head movement compensation correct 
using the least-squares minimization (Li et al., 2020). Without sub-
jects had head rotations greater than 1° or head movements ex-
ceeding 2 mm on any axis. Then, the imaging data were standardized 
based on the Montreal Neurological Institute space and resampled 
at 3 mm × 3 mm × 3 mm (Ashburner & Friston, 1999). Finally, the im-
aging data were smoothed by using a Gaussian filter with full width 
at half maximum (FWHM) of 4 mm (Guo et al., 2019). Temporal band-
pass filtering (0.01–0.08 Hz) was performed to reduce the effects of 
low-frequency drifts and high-frequency noise (Sharaev et al., 2016).

2.3 | Highly-available node calculation

The overall procedure of the highly-available node calculation is 
shown in Figure 1. At first, we extracted all of the 3 × 3 × 3 mm3 
voxel time series from the preprocessed rs-fMRI data, and then, let 
these voxels compose pairs randomly and calculated the Pearson 
correlation of every voxel pair by the following algorithm.

In Equation (1), the xi and xj are the BOLD signal of voxel i and 
voxel j at time t, the Xi and Xj represent the average value of voxel i 
and voxel j.

In this paper, a nondirectional connected Pearson correlation 
was used to make for the judgment of whether it was correlative 
between voxels (or brain regions). The Pearson r of auto correlation 
and negative correlation was deemed to zero.

Secondly, the rs-fMRI data were segmented into different re-
gions base on some anatomically divisional template. In this study, 
90 regions of interest (ROIs), each hemisphere 45 ROIs were ob-
tained by using the anatomical automatic labeling template (Tzourio-
Mazoyer et  al., 2002). Removing the voxel pairs in each ROIs, the 
rest of the voxel pairs are between different ROIs. Based on a 
threshold of Pearson r to remove those voxel pairs with low scores, 
we speculated the suitable threshold of Pearson r according to the 
following criteria:

Ⅰ, under the threshold of Pearson r, for each voxel, if there is at 
least one voxel in different ROI connect with it, it is defined as 
an effective voxel.
Ⅱ, for every ROI, there is at least one effective voxel being in-
cluded in it.
Finally, each ROI was regarded as a highly-available node. In 

order to constrain each pair of voxels from different ROIs in a ran-
domly way, we calculated the representative time series of each 
node by the following algorithm.

In Equation (2), two voxels of each voxel pair were coming from 
different ROIs. The N is the number of voxel pairs of all voxels in this 
ROI; the Nk is the number of voxel pairs of voxel k; the Ak is the time 
series of voxel k.

2.4 | Brain network construction

For every subject, with 90 brain ROIs for the node, build full con-
nected weighted brain networks. We calculated the Pearson correla-
tion between each pair of ROIs, as node connection strength in the 
brain network (Schindler et al., 2008).

(1)rij =

∑
[xi ( t ) − Xi ] [xj ( t ) − Xj ]

�∑
[xi ( t ) − Xi ]

2
∑

[xj ( t ) − Xj ]
2

(2)A =

1

N

∑
NkAk

AD MCI NC

Number 84 81 82

Male/female 41/43 42/39 41/41

Age range (year) (51–82) (49–77) (47–73)

Age (Mean ± SD) 74.17 ± 5.28 70.31 ± 3.18 69.88 ± 6.13

MMSE score (Mean ± SD) 16.28 ± 3.27 27.85 ± 2.42 28.97 ± 6.48

CDR score (Mean ± SD) 0.93 ± 0.28 0.48 ± 0.07 0.02 ± 0.17

Abbreviations: AD, Alzheimer's disease; CDR, Clinical Dementia Rating; MCI, mild cognitive 
impairment; MMSE, Mini-Mental State Examination; NC, normal control.

TA B L E  1  Demographic characteristics 
of subjects

F I G U R E  1  Flow chart representation of the highly-available 
node calculation

http://www.restfmri.net
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Although full connected weighted brain networks theoretical 
analyses are helpful for understanding disease mechanisms, it may get 
more incorrect results due to their redundant connective information. 
To deal with this problem, we used MST method and based on sparsity 
method to simplify the brain networks. The MST is acyclic and con-
nects all nodes in the original graph (Mieghem & Magdalena, 2005). 
The method of MST can remove redundant connection and keep the 
network core structure simultaneously, and it does not affect the 
overall analysis of the network. In this study, the MST method was ap-
plied based on the weighted networks with Kruskal's algorithm (Choi 
& Lee, 2013). Suppose WN = (V, E ) is a connection network with n 
nodes, in which the set of nodes is V and the set of edges is E. The 
first step of constructing the MST, the weights of all links are ranked 
in an ascending order and a subgraph with only n nodes and empty 
edge set is constructed (Tewarie et al., 2015). Then, an edge with the 
largest weight is selected from E, it is added to the subgraph if the two 
nodes of this edge belong to different trees. The following edges with 
the largest weight are added to the subgraph in the same way, until 
all nodes are connected in the subgraph that consists of n − 1 edges 
(Tewarie et al., 2015; Wang, Miao, et al., 2018).

To ensure that the resulting graphs metrics were accordant, they 
would be composed of same numbers of edges, and the weights 
of the brain functional network must to be filtered by a threshold 
(Liu, Zhang, Yan, et al., 2012). The sparsity was generally used as the 
threshold metrics for all the correlation matrices to simplify the brain 
networks (Achard & Bullmore,  2007; Scheltens,  2007). Because 
there is no gold standard for threshold selection, we simplified each 
original graph over a wide range of sparsity (6%≤S ≤ 36%), and based 
on 6% step length in this interval.

2.5 | Feature selection and classification

In traditional brain function connection network analysis, the fol-
lowing graph measures had been calculated generally degree, 
betweenness centrality (BC), node strength, clustering coeffi-
cient, range coefficient, transitivity, and assortativity etc. (Guo 
et  al.,  2018; Shaoqiang et  al.,  2020). In this study, weighted brain 
networks were constructed to study the deeper mutual informa-
tion between brain regions. The degree, BC, and clustering coeffi-
cient have good performances of node aggregation degree in the 
weighted network (Bloznelis, 2013; Sporns et al., 2007) and can well 
reflect the prevalence of each node and the situation around in brain 
network (Rubinov & Sporns, 2010). The degree ki is the number of 
connections of the node i (Liu & Tian, 2014). The BC is the number 
of shortest paths through a node. The clustering coefficient is frac-
tion of triangles around an individual node and is equivalent to the 
fraction of the node's neighbors (Rubinov & Sporns, 2010; Watts & 
Strogatz, 1998). The degree, BC, and local clustering coefficient of 
each region were calculated for every weighted brain network. The 
features were selected by using the two-sample t test method, and 
the functional connections which the p values of any two of these 
three measures were less than 0.05 were selected as feature. The 

Bonferroni test was used as calibration method in the significance 
tests (Bland & Altman, 1995). In this study, the significance level was 
set at p < .05.

Support Vector Machine (SVM) is a popular, powerful, super-
vised machine learning method for classification (Burges,  1998; 
Chang & Lin,  2011). SVM method usually constructs linear classi-
fication boundaries by using a kernel function in high dimensional 
spaces, and it is a common method for features classification in brain 
networks. In this study, a SVM that kernel function is Radial Basis 
Function (RBF) was selected (Chang & Lin, 2011). For evaluating the 
performance of classification, the accuracy, specificity, and sensitiv-
ity are often used in literature. Here, a 10-fold cross-validation was 
used to robust classification. The benchmark dataset was randomly 
divided into 10 subsets. One subset was selected as a test set, and 
the other subsets composed the corresponding training set, repeat 
that 10 times. For evaluating the performance of classification, ac-
curacy, specificity, and sensitivity are often used in literature (Ali 
et al., 2017).

2.6 | Identifying hub nodes

Hub nodes play a central role in overall organization of the brain 
network, and they are important brain regions that underpin numer-
ous aspects of complex cognitive function (Ali et al., 2017; van den 
Heuvel & Sporns,  2013). In order to explore the changes of local 
brain areas during the pathological process of AD, we identified the 
hub nodes of function connection network by calculating the BC of 
nodes. We measured the normalized betweenness bi of the node i by 
the following equation. Nodes with high values of bi were identified 
as the hubs of the brain networks.

In Equation (3) (He et al., 2008), Bi is the BC of the node i; ⟨B ⟩ is 
the average BC of the network.

3  | RESULTS

3.1 | Constructing function connection brain 
network

In this study, the MST of all subjects were constructed, each MST 
contained 90 nodes and 89 edges. To further show the distinc-
tions of MST within three groups, we constructed the MST based 
on the average adjacency matrix of each group respectively (shown 
in Figure 2). In this paper, graph theoretical visualization were per-
formed by BrainNet viewer software (https://www.nitrc.org/proje​
cts/bnv/) (Mingrui et al., 2013). In addition, the function connection 
brain networks were constructed at the sparsity of 6%, 12%, 18%, 
24%, 30%, and 36% orderly.

(3)bi =
Bi

⟨B ⟩

https://www.nitrc.org/projects/bnv/
https://www.nitrc.org/projects/bnv/
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3.2 | Classification of patients with AD and MCI 
from NC

To examine the performance of our algorithm for classification of 
patients with AD and MCI from NC subjects, we contrasted it with 
conventional algorithm on the same dataset. For conventional al-
gorithm, the representative time series of each ROI was calculated 
by averaging the time series of voxels within each of 90 regions. In 

different function connection network, selecting SVM with RBF 
kernel as classifier, performance of these two algorithms was com-
pared using 10-fold cross-validation (shown in Table  2). A better 
performance was achieved using our algorithm than conventional 
method. It is noteworthy that our algorithm achieved an accuracy 
of 74.09% in classification of MCI from NC and 77.58% in clas-
sification of AD from NC in function connection networks at the 
sparsity of 12%.

F I G U R E  2  Network structures of 
average MST for three groups. The size 
of nodes represents the connective edge 
number of brain regions, bigger size said 
the number of connective edges about 
this ROI was more, and smaller size said 
the edges was fewer. The color of edge 
indicates the path length between nodes, 
blue is a short length, black represents 
a long length. (a) The time series of each 
ROI was calculated by the method of 
highly-available node calculation. (b) The 
time series of each ROI was calculated by 
the conventional algorithm

TA B L E  2   Performance of classification using different function connection network

Network Method

Accuracy (%) Specificity (%) Sensitivity (%)

MCI AD MCI AD MCI AD

MST This paper 72.11 76.32 80.73 79.28 86.40 89.52

Conventional algorithm 63.85 69.08 74.62 71.85 78.33 81.09

Sparsity of 6% This paper 69.36 71.54 72.83 77.42 67.20 66.71

Conventional algorithm 59.92 62.16 60.70 73.52 53.28 61.44

Sparsity of 12% This paper 74.09 77.58 85.38 81.07 85.00 88.13

Conventional algorithm 70.43 70.99 81.27 73.31 76.52 82.40

Sparsity of 18% This paper 70.82 72.07 80.10 79.28 79.91 81.07

Conventional algorithm 65.33 69.76 73.05 69.48 70.37 78.59

Sparsity of 24% This paper 68.00 67.46 70.30 75.93 73.04 79.82

Conventional algorithm 60.53 61.47 64.86 69.57 70.48 69.55

Sparsity of 30% This paper 62.77 64.28 72.00 79.88 73.92 77.19

Conventional algorithm 55.92 59.28 67.93 72.01 66.00 71.52

Sparsity of 36% This paper 59.01 61.36 65.73 77.24 65.17 68.77

Conventional algorithm 52.40 54.71 59.97 69.38 62.44 61.06

Abbreviations: AD, Alzheimer's disease; MCI, mild cognitive impairment; MST, minimum spanning tree.
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Several other algorithms had also been applied in classification 
of patients with MCI and AD from NC. To prove the classification 
performance of our algorithm, we contrasted it with Feng Li's Robust 
Deep Model (Li et al., 2015) and Ali Khazaee's directed graph mea-
sure (Ali et  al.,  2017) on the same dataset. In order to perform a 
fair comparison with different methods, all methods used exactly 
the same SVM with RBF kernel as classifier, 10-fold cross-validation, 
and MST network. Particularly, the classification performances of 
different methods were clearly shown in Table 3, which indicate that 
our method had the best classification performance.

3.3 | Brain regions related to the cognitive status 
related to AD and MCI

As reported in Section 3.2, the connection networks at the spar-
sity of 12%, we got the best classification of AD and MCI from NC. 
The brain regions with large values in bi > 1.7 were identified as the 
hubs of connection networks (He et al., 2008; Liu, Zhang, Yan, et al., 
2012). In this study, we constructed the brain network at the spar-
sity of 12%, and the hub nodes were identified with bi > 1.7. For our 
method, 18 ROIs were identified as hub nodes in the three groups 
(shown in Table  4). For the conventional algorithm, 15 ROIs were 
identified as hub nodes in the three groups (shown in Table 5).

Finally, we examined the changes of the normalized betweenness 
between different groups (AD and MCI, AD and NC, MCI and NC) sev-
erally. The ROIs of the significant changes (p <  .05) between different 
groups were shown as follows. For our method, compared with MCI, AD 
subjects showed the BC decreases in the brain regions of the left supe-
rior temporal gyrus, the right rolandic operculum, and the left amygdala, 
while the BC increases were in the brain regions of the right olfactory 
cortex, the left orbital superior frontal gyrus, and the right parahippo-
campal (shown in Figure 3). Compared with NC, AD subjects showed the 
BC decreases in the brain regions of the right hippocampus, the left pos-
terior cingulate gyrus, the right rolandic operculum, and the left amyg-
dala, while the BC increases were in the brain regions of the left middle 
frontal, the right middle frontal, the left lingual, the left middle frontal 
orbital, and the right amygdala (shown in Figure 4). Compared with NC, 
MCI subjects showed BC decreases in the brain regions of the right pos-
terior cingulate gyrus, the left middle temporal, the right middle tempo-
ral, and the left hippocampus, while the BC increases were in the brain 

regions of the left superior temporal gyrus and the left calcarine (shown 
in Figure 5). For conventional algorithm, compared with MCI, AD subjects 
showed the BC decreases in the brain area of the right amygdala, while 
the BC increases were in the brain regions of the left middle frontal, the 
left lingual, and the right parahippocampal (shown in Figure 3). Compared 
with NC, AD subjects showed the BC decreases in the brain regions of 
the right hippocampus, the left superior temporal gyrus, and the right 
posterior cingulate gyrus, while the BC increases were in the brain re-
gions of the left middle frontal, the right olfactory cortex, left calcarine, 
and the left orbital superior frontal gyrus (shown in Figure 4). Compared 
with NC, MCI subjects showed the BC decreases in the brain regions of 
the left posterior cingulate gyrus, the right middle temporal, and the left 

Method

Accuracy (%) Specificity (%) Sensitivity (%)

MCI AD MCI AD MCI AD

This paper 72.11 76.32 80.73 79.28 86.40 89.52

Feng Li's Robust 
Deep Model

70.93 72.41 75.02 76.37 81.94 85.06

Ali Khazaee's 
directed graph 
measure

71.85 72.90 74.55 79.07 80.52 87.33

Abbreviations: AD, Alzheimer's disease; MCI, mild cognitive impairment.

TA B L E  3   Compared with different 
methods for performance of classification

TA B L E  4   Regions showing high betweenness in brain networks 
by using the highly-available nodes approach

Name of brain regions

Normalized betweenness,bi

AD MCI NC

Right hippocampus 0.326 1.970 4.842

Left middle frontal 3.831 1.512 0.327

Right middle frontal 4.271 1.176 0.315

Left superior temporal gyrus 0.173 2.847 1.252

Left posterior cingulate gyrus 0.378 0.832 2.311

Left lingual 3.436 1.772 0.580

Right olfactory cortex 2.732 0.743 1.310

Left orbital superior frontal gyrus 2.169 0.352 1.601

Right rolandic operculum 0.073 1.874 2.501

Left middle frontal orbital 3.809 1.630 0.427

Left amygdala 0.134 2.878 3.180

Right posterior cingulate gyrus 1.483 0.532 2.392

Right middle temporal 1.431 0.589 2.875

Right parahippocampal 3.359 0.247 2.926

Left middle temporal 1.007 0.086 1.975

Right amygdala 3.642 1.576 0.722

Left hippocampus 1.282 0.145 1.709

Left calcarine 1.661 3.387 0.425

Note: The bold font represents the ROI being with bi > 1.7 in the 
corresponding group.
Abbreviations: AD, Alzheimer's disease; MCI, mild cognitive impairment; 
NC, normal control.
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hippocampus, while the BC increases were in the brain regions of the 
right putamen and the left middle frontal orbital (shown in Figure 5).

4  | DISCUSSION

Here, we have presented a highly-available nodes approach for con-
structing and analyzing brain network of patients with MCI and AD. 
Based on this method, we respectively constructed the weighted rs-
fMRI brain networks for each subject on a database of total 247 sub-
jects (the subjects detail shown in Table 1). With SVM of RBF, kernel 
was selected as classifier, and accuracies of 74.09% and 77.58% were 
achieved for classification of MCI and AD from NC, respectively. In 
order to demonstrate the ability of our method for classification of 
patients with AD and MCI from NC subjects, we contrasted it with 
conventional algorithm on the same dataset. Our method achieved a 
better performance (shown in Table 2).

In addition, we analyzed the property of connection network for 
each subject, and 18 significant brain regions were identified as hub 
nodes by using our method. Comparing with the conventional algo-
rithm, four brain regions were more obtained. Remarkably, the brain 
regions of the right middle frontal and the left middle temporal gyrus 
had been reported in the studies by Ali Khazaee (Ali et al., 2017). 
In the studies of Liu, the brain regions of the right rolandic opercu-
lum and the left amygdala were reported as regions with significant 

F I G U R E  3  Brain regions showing abnormal nodal centrality in AD subjects compared with MCI subjects. The color of nodes represents the 
decreased (black) or increased (red) nodal centrality in AD subjects compared with MCI subjects. (a) The time series of each ROI was calculated 
by the method of highly-available node calculation. (b) The time series of each ROI was calculated by the conventional algorithm. Label: Left 
hippocampus (HIP.L), Right hippocampus (HIP.R), Left middle frontal (FrontalMid.L), Right middle frontal (FrontalMid.R), Left superior temporal 
(TemporalSup.L), Right posterior cingulate gyrus (CingulumPost.R), Left posterior cingulate gyrus (CingulumPost.L), Left lingual (LING.L), Right 
olfactory cortex (Olfactory.R), Right rolandic operculum (RolandicOper.R), Left calcarine (CAL.L), Left amygdala (AMYG.L), Right middle temporal 
(TemporalMid.R), Right parahippocampal (ParaHip.R), Left middle frontal orbital (FrontalMidOrb.L), Left middle temporal (TemporalMid.L), Left 
orbital superior frontal gyrus (FrontalSupOrb.L), Right amygdala (AMYG.R), Right putamen (Putamen.R), Left middle frontal orbita (FrontalMidOrb.L)

TA B L E  5   Regions showing high betweenness in brain networks 
by using the conventional algorithm

Name of brain regions

Normalized betweenness,bi

AD MCI NC

Left middle frontal 3.712 1.624 0.319

Left superior temporal gyrus 0.278 1.342 2.612

Left posterior cingulate gyrus 1.935 0.109 2.783

Left lingual 3.063 0.760 1.512

Right olfactory cortex 3.025 0.691 0.408

Left calcarine 2.726 1.080 0.319

Right putamen 1.201 2.931 0.213

Right posterior cingulate gyrus 0.075 1.804 2.192

Right middle temporal 1.022 0.118 1.783

Left orbital superior frontal gyrus 2.027 1.605 0.267

Right parahippocampal 3.518 0.728 1.652

Left middle frontal orbital 1.928 2.705 0.137

Right amygdala 0.367 1.158 2.870

Right hippocampus 0.218 1.452 3.734

Left hippocampus 0.957 0.031 1.995

Note: The bold font represents the ROI being with bi > 1.7 in the 
corresponding group.
Abbreviations: AD, Alzheimer's disease; MCI, mild cognitive impairment; 
NC, normal control.
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different nodal centrality between MCI patients and AD patients 
(Liu, Zhang, Yan, et al., 2012). So, the result of these hub brain re-
gions was dependable.

What's more, using network graphs to study clinical problems 
can provide useful insights for helping understanding the progress 
of the disease. In this research, we examined the changes of the 
brain regions nodal centrality between different groups (AD and 
MCI, AD and NC, MCI and NC) severally. We obtain that the brain 
regions of the left superior temporal gyrus, the left amygdala, and 
the left middle frontal showed significant difference in at least two 

groups of AD - MCI, AD – NC, and MCI - NC. Previous studies 
suggest that ceruloplasmin level and gene expression changes at 
the superior temporal gyrus were associated with aging and AD 
(Connor et  al.,  1993; Horesh et  al.,  2011). The neuropathological 
changes in the amygdala may be linked to the conversions from 
the MCI to AD (Gallo et al., 2010; Liu et al., 2010). A recent study 
found that the centrality of the right middle frontal was decreased 
in AD patients (Guo et  al.,  2016). The brain regions showing dif-
ferent nodal centrality in AD and MCI reflect the brain functional 
transform in AD and MCI.

F I G U R E  5   Brain regions showing 
abnormal nodal centrality in MCI subjects 
compared with NC subjects. The color 
of nodes represents the decreased 
(black) or increased (red) nodal centrality 
in MCI subjects compared with NC 
subjects. (a) The time series of each ROI 
was calculated by the method of highly-
available node calculation. (b) The time 
series of each ROI was calculated by the 
conventional algorithm. The label details 
were shown in Figure 3

F I G U R E  4   Brain regions showing 
abnormal nodal centrality in AD subjects 
compared with NC subjects. The color of 
nodes represents the decreased (black) 
or increased (red) nodal centrality in AD 
subjects compared with NC subjects. 
(a) The time series of each ROI was 
calculated by the method of highly-
available node calculation. (b) The time 
series of each ROI was calculated by the 
conventional algorithm. The label details 
were shown in Figure 3
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5  | CONCLUSION

In this article, we have proposed an approach for constructing and 
analyzing brain network of patients with MCI and AD. Comparing 
with the conventional algorithm, it achieved a better performance in 
classification of MCI and AD from NC. In addition, with analyzing the 
nodal centrality of the brain networks in AD, MCI, and NC, 18 sig-
nificant brain regions that identify as hub nodes were obtained. In a 
word, the highly-available nodes approach provided the representa-
tive time series of brain area effectively and facilitated the algorithm 
of the brain network topology analysis to perform a precise level.
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